Январь 2010 Февраль 2010 Март 2010 Апрель 2010 Май 2010
Июнь 2010
Июль 2010 Август 2010
Сентябрь 2010
Октябрь 2010
Ноябрь 2010
Декабрь 2010
Январь 2011
Февраль 2011 Март 2011 Апрель 2011 Май 2011 Июнь 2011 Июль 2011 Август 2011
Сентябрь 2011
Октябрь 2011 Ноябрь 2011 Декабрь 2011 Январь 2012 Февраль 2012 Март 2012 Апрель 2012 Май 2012 Июнь 2012 Июль 2012 Август 2012 Сентябрь 2012 Октябрь 2012 Ноябрь 2012 Декабрь 2012 Январь 2013 Февраль 2013 Март 2013 Апрель 2013 Май 2013 Июнь 2013 Июль 2013 Август 2013 Сентябрь 2013 Октябрь 2013 Ноябрь 2013 Декабрь 2013 Январь 2014 Февраль 2014
Март 2014
Апрель 2014 Май 2014 Июнь 2014 Июль 2014 Август 2014 Сентябрь 2014 Октябрь 2014 Ноябрь 2014 Декабрь 2014 Январь 2015 Февраль 2015 Март 2015 Апрель 2015 Май 2015 Июнь 2015 Июль 2015 Август 2015 Сентябрь 2015 Октябрь 2015 Ноябрь 2015 Декабрь 2015 Январь 2016 Февраль 2016 Март 2016 Апрель 2016 Май 2016 Июнь 2016 Июль 2016 Август 2016 Сентябрь 2016 Октябрь 2016 Ноябрь 2016 Декабрь 2016 Январь 2017 Февраль 2017 Март 2017 Апрель 2017 Май 2017
Июнь 2017
Июль 2017
Август 2017 Сентябрь 2017 Октябрь 2017 Ноябрь 2017 Декабрь 2017 Январь 2018 Февраль 2018 Март 2018 Апрель 2018 Май 2018 Июнь 2018 Июль 2018 Август 2018 Сентябрь 2018 Октябрь 2018 Ноябрь 2018 Декабрь 2018 Январь 2019
Февраль 2019
Март 2019 Апрель 2019 Май 2019 Июнь 2019 Июль 2019 Август 2019 Сентябрь 2019 Октябрь 2019 Ноябрь 2019 Декабрь 2019 Январь 2020
Февраль 2020
Март 2020 Апрель 2020 Май 2020 Июнь 2020 Июль 2020 Август 2020 Сентябрь 2020 Октябрь 2020 Ноябрь 2020 Декабрь 2020 Январь 2021 Февраль 2021 Март 2021 Апрель 2021 Май 2021 Июнь 2021 Июль 2021 Август 2021 Сентябрь 2021 Октябрь 2021 Ноябрь 2021 Декабрь 2021 Январь 2022 Февраль 2022 Март 2022 Апрель 2022 Май 2022 Июнь 2022 Июль 2022 Август 2022 Сентябрь 2022 Октябрь 2022 Ноябрь 2022 Декабрь 2022 Январь 2023 Февраль 2023 Март 2023 Апрель 2023 Май 2023 Июнь 2023 Июль 2023 Август 2023 Сентябрь 2023 Октябрь 2023 Ноябрь 2023 Декабрь 2023 Январь 2024 Февраль 2024 Март 2024 Апрель 2024 Май 2024 Июнь 2024 Июль 2024 Август 2024 Сентябрь 2024 Октябрь 2024 Ноябрь 2024 Декабрь 2024 Январь 2025
1 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Game News |

Open AI co-founder reckons AI training has hit a wall, forcing AI labs to train their models smarter not just bigger

Ilya Sutskever, co-founder of OpenAI, thinks existing approaches to scaling up large language models have plateaued. For significant future progress, AI labs will need to train smarter, not just bigger, and LLMs will need to think a little bit longer.

Speaking to Reuters, Sutskever explained that the pre-training phase of scaling up large language models, such as ChatGPT, is reaching its limits. Pre-training is the initial phase that processes huge quantities of uncategorized data to build language patterns and structures within the model.

Until recently, adding scale, in other words increasing the amount of data available for training, was enough to produce a more powerful and capable model. But that's not the case any longer, instead exactly what you train the model on and how is more important.

“The 2010s were the age of scaling, now we're back in the age of wonder and discovery once again. Everyone is looking for the next thing,” Sutskever reckons, "scaling the right thing matters more now than ever.”

The backdrop here is the increasingly apparent problems AI labs are having making major advances on models in and around the power and performance of ChatGPT 4.0.

The short version of this narrative is that everyone now has access to the same or at least similar easily accessible training data through various online sources. It's no longer possible to get an edge simply by throwing more raw data at the problem. So, in very simple terms, training smarter not just bigger is what will now give AI outfits an edge.

Another enabler for LLM performance will be at the other end of the process when the models are fully trained and accessed by users, the stage known as inferencing.

Here, the idea is to use a multi-step approach to solving problems and queries in which the model can feed back into itself, leading to more human-like reasoning and decision-making.

“It turned out that having a bot think for just 20 seconds in a hand of poker got the same performance boost as scaling up the model by 100,000x and training it for 100,000 times longer,” Noam Brown, an OpenAI researcher who worked on the latest o1 LLM says.

Your next upgrade

(Image credit: Future)

Best CPU for gaming: The top chips from Intel and AMD.
Best gaming motherboard: The right boards.
Best graphics card: Your perfect pixel-pusher awaits.
Best SSD for gaming: Get into the game ahead of the rest.

In other words, having bots think longer rather than just spew out the first thing that comes to mind can deliver better results. If the latter proves a productive approach, the AI hardware industry could shift away from massive training clusters towards banks of GPUs focussed on improved inferencing.

Of course, either way, Nvidia is likely to be ready to take everyone's money. The increase in demand for AI GPUs for inferencing is indeed something Nvidia CEO Jensen Huang recently noted.

"We've now discovered a second scaling law, and this is the scaling law at a time of inference. All of these factors have led to the demand for Blackwell [Nvidia's next-gen GPU architecture] being incredibly high," Huang said recently.

How long it will take for a generation of cleverer bots to appear thanks to these methods isn't clear. But the effort will probably show up in Nvidia's bank balance soon enough.



Читайте также

Не робот? Убей трёх монстров! — тест CAPTCHA заменили игрой в Doom

Survival 2D

Говорящий Том: гонка на время 1.3.3.18012

Москва

Джимми Картер и бойкот Олимпиады-80: наследие 39-го президента США

Новости тенниса



Game24.pro — паблик игровых новостей в календарном формате на основе технологичной новостной информационно-поисковой системы с элементами искусственного интеллекта, гео-отбора и возможностью мгновенной публикации авторского контента в режиме Free Public. Game24.pro — ваши Game News сегодня и сейчас в Вашем городе.

Опубликовать свою новость, реплику, комментарий, анонс и т.д. можно мгновенно — здесь.


Персональные новости

Подкаст "Женское дело. Лаборатория успеха". В гостях Ксения Подхватиловская

Почувствуй ритм жизни на бесплатном уроке игры на барабанах от Не школы барабанов

Росгвардейцы эвакуировали трех граждан из задымленной квартиры в Тамбове

Предлагаем вам возможность участвовать в записи программ на Радио.